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Abstract. To avoid the defects of higher-spin interaction theory, the field-dependent invariant
representation (the ‘dynamical’ representation) of the Poincaré algebra is considered as a dynamical
principle. A general ‘dynamical’ representation for a single elementary particle of arbitrary spin
in the presence of a plane-wave field is constructed and the corresponding forms of the higher-
spin interaction terms found. The properties of relativistically invariant first-order higher-spin
equations with the ‘dynamical’ interaction are examined. It is shown that the Rarita–Schwinger
spin-32 equation with the ‘dynamical’ interaction is causal and free from algebraic inconsistencies.
As distinct from the first-order higher-spin relativistic equations with the minimal coupling, there
exist the Klein–Gordon divisors for the first-order equations with the non-minimal, ‘dynamical’
interaction, and the corresponding Klein–Gordon equations are causal.

1. Introduction

The description of higher-spin particles in interaction is beset with difficulties. It was in
the 1960s that defects were found in higher-spin interaction theories. On the quantum level
it was demonstrated [1, 2] that in the case of minimal electromagnetic coupling some of the
anticommutation relations would become indefinite. It appears that the defects are also present
on the classical level. It was revealed that in external electromagnetic fields there appear acausal
modes of propagation [3]. Besides, there exist algebraic inconsistencies in some higher-spin
interaction theories.

Since the 1960s much work has been done to solve the problems, but no satisfactory results
have been obtained by using minimal electromagnetic coupling. The task of finding the origin
of the defects of higher-spin interaction theory is still topical.

The search for a consistent higher-spin theory is faced with different difficulties. First, the
theory of the relativistic wave equation is based on the representations of the Poincaré group.
However, the representations of the Poincaré group in field theory are somewhat specific in
their mathematical realization. Secondly, the theory of higher-spin fields is rather complicated
and the wave equations and Lagrangians used there are not always correct. Thus it is difficult
to say whether the problems connected with higher-spin theories are technical or pertain to
principle.
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In relativistic particle theory the Poincaré group plays a fundamental role. However, in
the case of minimal coupling of the electromagnetic field, in higher-spin theories the Poincaré
invariance is violated. One can make a hypothesis that the defects of the higher spin are due
to the Poincaŕe non-invariant minimal coupling, which means that a new dynamical principle
is needed. This principle would give minimal coupling in the lower-spin cases (s = 0, 1

2) and
a new, non-minimal Poincaré-invariant interaction in the higher-spin cases.

In this paper, an attempt is made to build a consistent higher-spin theory by using the
‘dynamical’ representation of the Poincaré algebra as a dynamical principle. This is in
agreement with the requirements referred to above. The ‘dynamical’ representation of the
Poincaŕe algebra was first introduced by Chakrabarti [4] and further studied by Beers and Nickle
[5] in the case of spin-12 particles. We generalize their work by constructing the ‘dynamical’
representations for arbitrary spins in interaction with the same special external field as used
by the above authors. That is, the representations are built by way of introducing a plane
electromagnetic field into the free Poincaré algebra. The new ‘dynamical’ representations are
constructed from the generators of the free Poincaré algebra and the external field in such a way
that the new, field-dependent generators obey the commutation relations of the free Poincaré
algebra. Now, analogously to the free-particle theory, the wave equations with respect to the
‘dynamical’ representation of the Poincaré algebra can be constructed. So, our principal idea
will not be to introduce any auxiliary fields (e.g. supergravity) and particles (e.g. lower spins),
but to construct a consistent theory of interacting higher-spin fields by means of only a single
particle and external field.

In such a theory, in spite of the presence of the external field, the particle behaves like a
free particle. Since the free higher-spin theory has no defects, there is a hope that some of the
troubles existing in the minimal coupling theory can be avoided in the ‘dynamical’ interaction
theory. The main goal of the present paper is to examine whether this is really the case.

The paper is organized as follows. In section 2 we construct the ‘dynamical’ representation
of the Poincaŕe algebra for arbitrary spins and an external plane-wave field. In section 3 the
first-order relativistic wave equations for arbitrary spins in the ‘dynamical’ representation are
given. In section 4 the ‘dynamical’ representation of the Rarita–Schwinger spin-3

2 equation,
i.e. of the equation with subsidiary conditions, is presented. In section 5 we demonstrate that
the ‘dynamical’ representation of the Rarita–Schwinger spin-3

2 equation is causal. Some final
remarks are added in section 6.

2. ‘Dynamical’ representation of the Poincaŕe algebra for any spin

Let us proceed from commutation relations of the ten-dimensional Lie algebra,p1.3, of the
Poincaŕe groupP1,3 = T1,3 � SO1,3 (T1,3 denotes the Abelian group of 4-translations and
SO1,3 is the restricted Lorentz group)

[Mµν,Mρσ ] = i(gµσMνρ + gνρMµσ − gµρMνσ − gνσMµρ)

[Mµν, Pσ ] = i(gνσPµ − gµσPν)
[Pµ, Pν ] = 0.

(2.1)

Here the four generatorsPµ correspond to the subgroup of translations, and the other six,Mµν ,
to the restricted Lorentz group. The generators have the form:

Pµ = i∂µ
Mµν = Lµν + Sµν
Lµν = xµPν − xνPµ

(2.2)
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whereSµν are the generators of the finite-dimensional representation of the Lorentz group.
The Casimir operators are

P 2 = PµPµ W 2 = WµW
µ (2.3)

whereWµ = 1
2εµνρσM

νρP σ is the common Pauli–Lubanski pseudovector.
Our idea is to introduce an external field invariantly into the Poincaré algebra, i.e. one

has to transform the Poincaré generators to be dependent on the external field in such a way
that the new, field-dependent generators would obey the commutation relations (2.1). Such a
Lie algebra of the Poincaré group is called ‘dynamical’. As was shown by Chakrabarti, the
simplest way to build the ‘dynamical’ representation is to introduce the external field by a
non-singular transformation

U : p1,3→ p
d
1,3 = Up1,3U

−1 = p1,3 + [U, p1,3]U−1 (2.4)

or explicitly

πµ = Pµ + [U,Pµ]U−1 χµ = xµ + [U, xµ]U−1

σµν = Sµν + [U, Sµν ]U
−1 λµν = χµπν − χνπµ + σµν.

(2.5)

Now the question is, how to find the transformation operator. Does it exist for any field
Aµ(x) or only for the special forms ofAµ(x)? There is no direct prescription for how to find
the operatorU in general. However, it can be shown [6, 7] that such an operator can be found
for a special field. Let the external field be an arbitrary function ofξ = k · x

Aµ(x) = Aµ(ξ) (2.6)

with the Lorentz gauge

kµA′µ = 0 (2.7)

whereA′µ = (dAµ/dξ). (Physically speaking, we make a reasonable idealization, describing
a laser beam with a plane-wave field characterized by a null vectorkµ.)

The Poincaŕe algebrap1,3 and the external fieldAµ(ξ) together generate the ‘dynamical’
representationpd1,3 with the operators

Pµ→ πµ = Pµ + kµh
′ + kµbFσρSσρ

Sµν → σµν = Sµν + 2b(gµρGνσ − gνρGµσ + bgµρ(G)
2
νσ − bgνρ(G2)µσ + bGµνGρσ )S

ρσ

xµ→ χµ = xµ + i[h + bGσρS
ρσ , xµ]

Lµν → λµν = χµπν − χνπµ

(2.8)

where

h′ = dh

dξ
b = −e

2Kp
bGµν = kµfν − kνfµ

Fµν = G′µν (G2)µν = GµρG
ρ
ν .

(2.9)

The parametere is the charge of the particle described by the wavefunctionψ(x).
The operatorKp ≡ kµPµ commutes with any other and plays a special role in the theory.

Further it is assumed that its inverse, 1/Kp, exists in case it is needed for the construction of
the theory, i.e. the operator 1/Kp is assumed to be non-singular.

According to the line of thought presented by relation (2.4), realization of (2.8) can be
achieved by the non-singular transformation

U = exp i(h + bGσρS
σρ) (2.10)

and, therefore, the construction of the ‘dynamical’ representation in the case of the field on
which the restrictions (2.6) and (2.7) are valid is fulfilled. With the exception of the special
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form of the field the constructed ‘dynamical’ representation is the most general representation
for an arbitrary spin.

To use the representation reasonably it needs a specification. Having introduced the
external field into the Poincaré algebra, we have introduced a certain form of interaction into
the theory. It is reasonable to specify the representation in such a way that, in the spin-0 and
spin-12 cases, the interaction introduced with the help of the ‘dynamical’ representation would
coincide with the minimal electromagnetic coupling. The desired result can be achieved by
choosing

fµ = −e
2Kp

Aµ h′ = e

Kp

(
1
2eA

2 − AP ).
From equations (2.9)

Gµν = kµAν − kνAµ Fµν = kµA′ν − kνA′µ = ∂µAν − ∂νAµ
and the generators of the ‘dynamical’ Poincaré algebrapd1,3 have the form:

πµ = Pµ + kµ
e

2Kp
(eA2 − 2A · P − FσρSσρ)

σµν = Sµν − e

Kp

(
e

2Kp
A2(gµρkν − gνρkµ)kσ + gµρ(kνAσ − kσAν)

−gνρ(kµAσ − kσAµ)− e

Kp
(kµAν − kνAµ)kρAσ

)
Sρσ

χµ = xµ − e

2Kp

[
xµ,

∫
dξ (eA2 − 2A · P)−GσρS

σρ

]
.

(2.11)

These generators can be found by applying to the free Poincaré generators the operator

U = U0 · U(s) (2.12)

where

U0 = exp

[
i
∫

dξ

2Kp
[2eP · A(ξ)− e2A2(ξ)]

]
(2.13)

and

U(s) = exp

[
−i

e

2Kp
(kµAν − kνAµ)Sµν

]
. (2.14)

3. ‘Dynamical’ interactions

We have shown that in the case of a special external electromagnetic field there exists the
operatorU which transforms the free Poincaré algebrap1,3 into the ‘dynamical’ representation
pd1,3. By analogy with the free-particle case one can realize the ‘dynamical’ representation
pd1,3 on the solution space of the relativistically invariant equations. If in the ‘dynamical’
representation of equations we write the operators explicitly in terms of the free-field operators,
as in equation (2.11), we can find the forms of the Poincaré-invariant ‘dynamical’ interactions,
which will be demonstrated below. Since any system of higher-order differential equations
can be reduced to a first-order system, let us start with a first-order relativistic system

(P µβµ −m)8 = 0. (3.1)

The requirement of relativistic invariance imposes the following conditions on theβ-matrices:

[βµ, Sρσ ] = i(gµρβσ − gµσβρ). (3.2)
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The requirement of relativistic invariance also implies the Klein–Gordon condition, which
claims that equation (3.1) can be reduced to the Klein–Gordon equation for every component
of the multi-component wavefunction8 by a finite number of differentiations and algebraic
operations. Such an operator which transforms the first-order relativistic wave equation
into the second-order Klein–Gordon equation is called the Klein–Gordon divisor [8] and the
requirement can be written as follows:

dKG(P
µβµ −m) = P 2 −m2. (3.3)

Further, equation (3.1) describes a system of many spins. To convert the equation into that
of the single-particle theory one has to impose supplementary conditions on theβ-matrices.
These conditions depend on the value of the spin of the particle we want the equation to
describe.

Applying the operatorU to equation (3.1), one finds

U : (P µβµ −m)8→ (πµ0
µ −m)8d = 0 (3.4)

where

πµ = UPµU−1 0µ = UβµU−1 8d = U8.
The0-matrices satisfy the requirement of relativistic invariance with respect to the ‘dynamical’
representation

[0µ, σρσ ] = i(gµρ0σ − gµσ0ρ) (3.5)

and all the other requirements needed for the construction of a single-particle theory.
In order to obtain the0-matrices we make use of the transformationU in its explicit form,

equation (2.14). We find

0µ = Vµρβρ = βµ − e

Kp

(
e

2Kp
A2kµkρ +Gµρ

)
βρ

where the

Vµρ =
(
exp−(e/Kp)G

)
µρ

obey the relation

V µρ Vµρ = gρσ .
Now, using the explicit forms ofπµ and0µ, we derive the ‘dynamical’ interaction in the
language of free relativistic wave equations as follows:

(πµ0
µ −m)8d =

(
Dµβ

µ − e

2Kp
6k 6F −m

)
8d = 0. (3.6)

Here 6k = kµβµ and 6F = FµνSµν .
It is important to notice that for the ‘dynamical’ interaction we obtain the following formal

substitution:

Pµ→ Pµ − eAµ − e

2Kp
kµ 6F

which differs from the minimal substitution with respect to the added term−(e/Kp)kµF , and
which does not coincide with the transformationPµ→ πµ. Finally, from equation (3.6) it can
be seen that the ‘dynamical’ interaction coincides with the minimal one if the second term in
the equation is equal to zero. This must naturally be the case for spin-0 and spin-1

2 particle
equations: the operatorU has been chosen to be in agreement with the minimal coupling.
Demonstration of the above-mentioned facts is straightforward.
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The Kemmer–Duffin spin-0 free-particle theory is defined by equation (3.1), where the
β-matrices satisfy the relations

βµβνβσ + βσβνβµ = gµνβσ + gνσβµ

with the supplementary condition

βµβνβσ = 0 if µ 6= ν 6= σ 6= µ
and the Lorentz operators are defined as

Sµν = i[βµ, βν ].

It can easily be shown that from the above properties of theβ-matrices it follows that

kµFρσβ
µSρσ = 0.

In the Dirac spin-12 particle caseβµ = γµ andSµν = i 1
4[γµ, γν ]. Here it can also be easily

verified that

kµFρσ γ
µSρσ = 0.

However, for spins higher than12 the second term in equation (3.6) generally differs from zero,
which means that the interaction induced by the ‘dynamical’ representation is non-minimal.

The question is whether the new, non-minimal interaction will enable avoidance of some
of the defects of the higher-spin interaction theory.

4. Rarita–Schwinger equation in a ‘dynamical’ interaction

The free spin-32 particle Rarita–Schwinger equation [9] is given as

(Pµγ
µ −m)ψσ = 0 (4.1a)

γµψ
µ = 0 (4.1b)

Pµψ
µ = 0. (4.1c)

Usually the first equation in the system is called the true equation of motion and the two
others are subsidiary conditions.

Not all the equations in (4.1) are independent. Indeed, by multiplying the equation from the
left byγ σ and by using the first subsidiary condition one obtains the last condition. Multiplying
the first equation (4.1) by6P +m one obtains the Klein–Gordon equation

(P 2 −m2)ψµ = 0.

Let us now transform equation (4.1) into the ‘dynamical’ representation. In order to do
this one must cast the equation into the matrix form [10],

[Pµ(1⊗ γ µ)−m]ψ = 0 (4.2a)

(Eµν ⊗ γ ν)ψ = 0 (4.2b)

Pµ(Eρµ ⊗ 1)ψ = 0 (4.2c)

where

(Eµν)
ρ
σ = gρµgνσ .
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Now we can apply the transformation (2.12), in which for spin3
2

Sµν = −ieµν ⊗ 1 + 1⊗ sµν
where(eµν)ρσ = −gρµgνσ + gµσgρν andsµν = i 1

4[γµ, γν ], so that the matrixU takes the form:

U = U0(UP ⊗ UD) (4.3a)

with

UP = exp

[
− e

2Kp
(kµAν − kνAµ)eµν

]
(4.3b)

as the spin-1 (Proca) part and

UD = exp

[
− e

4Kp
(kµAν − kνAµ)γ µγ ν

]
(4.3c)

as the bispinor (Dirac) part [11].
Applying the operatorU defined by equations (4.3) to equation (4.2) one obtains the

Rarita–Schwinger equation in the ‘dynamical’ representation as follows:[
(6D −m)gµν − ie

Kp
6kFµν

]
9dν = 0 (4.4a)

γµ9
dµ = 0 (4.4b)

where9d ≡ Uψ and 6k ≡ kµγ µ.
The first equation is the true equation of motion because it contains all the derivatives

Dρ9
d
σ . The static constraint (4.4b) is needed in order to eliminate all the superfluous spin-1

2
components.

In the same way, using the operatorU or applying the operator(6D+m) to the system (4.4)
one obtains

(P 2 −m2)ψµ = 0→ [(6D2 −m2
)
gµρ − 2ieFµρ

]
9dρ = 0 (4.5)

Pρψ
ρ = 0→

(
Dρ − ie

4Kp
6Fkρ

)
9dρ = 0 (4.6)

where6F ≡ Fρσγ ργ σ .
As in the free-particle case only the equations in (4.4) are independent. Contracting the

first equation (4.4a) with γµ one obtains equation (4.6) and hence the dynamical interaction
is algebraically consistent.

5. ‘Dynamical’ interaction and causality properties

The main imperfection of the higher-spin theories with minimal coupling is the existence of
solutions which propagate acausally. The problems associated with acausality of higher-spin
equations, and in particular those for spin-3

2 fields, have been the subject of many studies
[1, 3, 12–16].

The causality properties of the relativistic first-order wave equations can be investigated,
on the one hand, from the equations themselves by using the Courant method [17] of wavefronts
and, on the other hand, by the Klein–Gordon equation deduced from the first-order equation
by applying the Klein–Gordon divisor, if such an operator exists.

The former possibility of examining the causality properties of the equations is quite
complicated because, due to the singularity of theβ-matrices, the Courant method cannot be
applied directly. Nevertheless, we use the Courant method after decomposing the solution
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9d into two terms, one of which is a transverse vector–bispinor field8µ and the other is
determined by a bispinor fieldB, i.e. [12, 13]

9d
µ = 8µ + 1

4γµ 6DB (5.1)

where

Dµ8
µ = 0. (5.2)

Substituting this expansion into equations (4.5) one obtains

6D8µ − 1

2
Dµγρ8

ρ −m8µ +
m

4
γµγρφ

ρ − ie

Kp
6kFµρ8ρ

+
ie

8Kp
kµ 6Fγρ8ρ − ie

4Kp
γµ 6Fkρ8ρ = 0 (5.3a)

6DB + γρ8
ρ = 0. (5.3b)

To account for the expansion (5.1) we note that{8µ,B}3µ=0 denote the new dynamical variables
for which equations (5.3) provide the true equations of motion. Furthermore, the expansion
(5.1) presupposes the invariance under the gauge transformation

8µ→ 8µ + γµ 6D3 (5.4)

B → B − 43

where3 is an arbitrary bispinor solution of the wave equation

6D23 = 0. (5.5)

Thus the number of independent dynamical variables has been reduced to 16.
To investigate the nature of the propagation one must calculate the characteristic

determinantD(n) and examine its characteristic rootsnµ. The equation is hyperbolic if for
any unit space vector,En, En2 = 1, all the values of then0 solutions ofD(n) = 0 are real,
and the theory is causal if all satisfy‖n0‖ 6 1 [17]. To find the characteristic determinant of
equation (5.3), we replaceDµ by nµ in the derivatives and calculate the determinant1(n) of
the resulting coefficient matrix:

1(n) = ( 1
2

)4(
n2
)8
.

Therefore, the system (5.3) is obviously hyperbolic, every characteristic surface is the lightcone
and the propagation is causal.

To study the causality properties of the first-order wave equations by means of the
corresponding Klein–Gordon equation, one must suppose the existence of the Klein–Gordon
divisor dKG. In general, the time coefficient matrixβ0 is singular and thereby equation (3.1)
is not a true equation of motion: the time derivatives of certain field components are not
determined. In the free-field case a true equation of motion may be obtained by usingdKG(P ),
which is a polynomial inPµ andβµ, and is easily calculated with the help of the minimal
polynomial ofβµ.

For the interaction case the substitutionPµ → Dµ does not provide a divisordKG(D)
which would yield a second-order equation. It has been shown by Cox [18] that for a causal
theory based on the wave equation (3.1) interacting minimally with an external field, severe
supplementary conditions are needed.

One can demonstrate that, in the case where theβ-matrices are such that for equation (3.1)
there exists a Klein–Gordon divisor, there also exists the divisor for equation (3.4) (or (3.7))
generated by the transformation

U : dKG→ 2KG = UdKGU−1. (5.6)
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Application of the ‘dynamical’ divisor to equation (3.4) gives

2KG(πµ0
µ −m)8d = (π2 −m2)8d = (D2 − eFρσSρσ −m2)8d = 0. (5.7)

The second-order equation is the arbitrary-spin generalization of the Feynmann–Gell–
Mann equation, or the Klein–Gordon equation with ‘dynamical’ (interaction) coupling. Since
the coefficient matrices before the highest (second-order) derivatives are equal to a unit
matrix one may conclude that all the equations (3.1) which have the Klein–Gordon divisor
describe, in the presence of ‘dynamical’ interaction, a causal propagation.

Finally, we consider an example of a spin-3
2 particle. It has been shown [3, 13] that

equation (3.1), in the presence of interaction for spin3
2, has solutions which propagate

acausally. However, the results of the analysis presented above demonstrate that in the case
of ‘dynamical’ coupling with a plane-wave fieldAµ the first-order spin-32 equation describes
causal propagation. Indeed, according to the concept of weak discrete symmetries the most
general equation equivalent to that of Rarita–Schwinger (4.1) is [19]

{Pσγ σgµρ + Y1γµPρ + Y2Pµγρ + Y3Pσγ
σ γµγρ −mgµρ}ψρ = 0. (5.8)

Here the coefficientsYµ ≡ yµ + ȳµγ5, yµ, ȳµ ∈ R obey the nilpotency conditions

Y0Ȳ0 = 1

1 +Y1 + Y2 + Y3 + 3Y1(Y2 + 2Y3) = 0

2Y1 + Y2 − 2Y3− Ȳ1 + 2(Y1 + Y2 − 2Y3)Ȳ1 = 0

2 + 3Y1 + 3(1 + 2Y1)(Ȳ2 + 2Ȳ3) = 0.

(Here by definitionȲi = yi − ȳiγ5.)
The Klein–Gordon divisor of equation (5.8) has the following form:

dKG(P ) = m + (Pβ) +
1

m

[
(Pβ)2 − P 2

]
+

1

m2
(Pβ)

[
(Pβ)2 − P 2

]
where(Pβ) ≡ Pµβµ and

(βσ )µν = Y0gµνγ
σ + Y1g

σ
νγµ + Y2g

σ
µγν + Y3γ

σ γµγν. (5.9)

In the presence of ‘dynamical’ interaction one finds{
(Y0 6D −m)gµν − Y3γµ 6Dγν − ie

Kp
Y0 6kFµν + Y1γµLν + (Y2 + 2Y3)Lµγν

}
9dµ = 0

(5.10)

whereLµ ≡ Dµ − (ie/4Kp)kµ 6F and 6F ≡ Fρσγ ργ σ . However, in spite of the equivalence
of the free equations (4.1) and (5.8), it is extremely difficult to prove the equivalence of
equations (4.4) and (5.10) if theYµ satisfy the nilpotency conditions. Nevertheless, the
‘dynamical’ divisor2KG transforms equation (5.10) into equation (4.5) and therefore a pure
spin-32 equation in the presence of ‘dynamical’ interaction, equation (5.10) describes a causal
propagation of waves.

6. Final remarks

The basic advantage of the ‘dynamical’ representation is the consistent and causal theory of
the single spin-32 particle. Naturally, some problems arise. For instance, establishing the
equivalence between the Rarita–Schwinger equation and the Bhabha-type equation in the
presence of a ‘dynamical’ interaction. The technical complications result in the calculation
of constraints and therefore, the Velo–Zwanziger method for estimation of causality proves
inapplicable. To test whether or not the first-order equation (3.6) suffers from acausality of
propagation, one could make use of the shock-wave formalism of Madora and Tait [20], which,
however, is the subject of a separate study.
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