IOPSClence iopscience.iop.org

Home Search Collections Journals About Contactus My IOPscience

‘Dynamical’ representation of the Poincaré algebra for higher-spin fields in interaction with

plane waves

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
1999 J. Phys. A: Math. Gen. 32 2499
(http://iopscience.iop.org/0305-4470/32/12/020)

View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 171.66.16.105
The article was downloaded on 02/06/2010 at 07:27

Please note that terms and conditions apply.



http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/32/12
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience

J. Phys. A: Math. GerB2 (1999) 2499-2508. Printed in the UK PIl: S0305-4470(99)00515-6

‘Dynamical’ representation of the Poincaré algebra for
higher-spin fields in interaction with plane waves

R Saarf], R K Loide1q], | Ots§ and R Tammeloff

T Institute of Theoretical Physics, Tartu Universitahe Street 4, Tartu 51010, Estonia
T Department of Physics, Tallinn Technical University, Ehitajate Road 5, Tallinn 19086, Estonia
§ Institute of Physics, Tartu University, Riia Street 142, Tartu 51014, Estonia

Received 22 December 1998

Abstract. To avoid the defects of higher-spin interaction theory, the field-dependent invariant
representation (the ‘dynamical’ representation) of the Poénalgiebra is considered as a dynamical
principle. A general ‘dynamical’ representation for a single elementary particle of arbitrary spin
in the presence of a plane-wave field is constructed and the corresponding forms of the higher-
spin interaction terms found. The properties of relativistically invariant first-order higher-spin
equations with the ‘dynamical’ interaction are examined. It is shown that the Rarita—Schwinger
spin-g equation with the ‘dynamical’ interaction is causal and free from algebraic inconsistencies.
As distinct from the first-order higher-spin relativistic equations with the minimal coupling, there
exist the Klein—-Gordon divisors for the first-order equations with the non-minimal, ‘dynamical’
interaction, and the corresponding Klein—Gordon equations are causal.

1. Introduction

The description of higher-spin particles in interaction is beset with difficulties. It was in
the 1960s that defects were found in higher-spin interaction theories. On the quantum level
it was demonstrated [1, 2] that in the case of minimal electromagnetic coupling some of the
anticommutation relations would become indefinite. It appears that the defects are also present
onthe classicallevel. Itwas revealed thatin external electromagnetic fields there appear acausal
modes of propagation [3]. Besides, there exist algebraic inconsistencies in some higher-spin
interaction theories.

Since the 1960s much work has been done to solve the problems, but no satisfactory results
have been obtained by using minimal electromagnetic coupling. The task of finding the origin
of the defects of higher-spin interaction theory is still topical.

The search for a consistent higher-spin theory is faced with different difficulties. First, the
theory of the relativistic wave equation is based on the representations of the Bajrmap.
However, the representations of the Poicgroup in field theory are somewhat specific in
their mathematical realization. Secondly, the theory of higher-spin fields is rather complicated
and the wave equations and Lagrangians used there are not always correct. Thus it is difficult
to say whether the problems connected with higher-spin theories are technical or pertain to
principle.
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In relativistic particle theory the Poindagroup plays a fundamental role. However, in
the case of minimal coupling of the electromagnetic field, in higher-spin theories the RBoincar
invariance is violated. One can make a hypothesis that the defects of the higher spin are due
to the Poinca non-invariant minimal coupling, which means that a new dynamical principle
is needed. This principle would give minimal coupling in the lower-spin cases(, %) and
a new, non-minimal Poincarinvariant interaction in the higher-spin cases.

In this paper, an attempt is made to build a consistent higher-spin theory by using the
‘dynamical’ representation of the Poinéaalgebra as a dynamical principle. This is in
agreement with the requirements referred to above. The ‘dynamical’ representation of the
Poincaé algebrawasfirstintroduced by Chakrabarti [4] and further studied by Beers and Nickle
[5] in the case of spir% particles. We generalize their work by constructing the ‘dynamical’
representations for arbitrary spins in interaction with the same special external field as used
by the above authors. That is, the representations are built by way of introducing a plane
electromagnetic field into the free Poinealgebra. The new ‘dynamical’ representations are
constructed from the generators of the free Poi@atgebra and the external field in such a way
that the new, field-dependent generators obey the commutation relations of the free@oincar
algebra. Now, analogously to the free-particle theory, the wave equations with respect to the
‘dynamical’ representation of the Poinéaailgebra can be constructed. So, our principal idea
will not be to introduce any auxiliary fields (e.g. supergravity) and particles (e.g. lower spins),
but to construct a consistent theory of interacting higher-spin fields by means of only a single
particle and external field.

In such a theory, in spite of the presence of the external field, the particle behaves like a
free particle. Since the free higher-spin theory has no defects, there is a hope that some of the
troubles existing in the minimal coupling theory can be avoided in the ‘dynamical’ interaction
theory. The main goal of the present paper is to examine whether this is really the case.

The paper is organized as follows. In section 2 we construct the ‘dynamical’ representation
of the Poincag algebra for arbitrary spins and an external plane-wave field. In section 3 the
first-order relativistic wave equations for arbitrary spins in the ‘dynamical’ representation are
given. In section 4 the ‘dynamical’ representation of the Rarita—SchWingergquuation,

i.e. of the equation with subsidiary conditions, is presented. In section 5 we demonstrate that
the ‘dynamical’ representation of the Rarita—Schwinger s:péquation is causal. Some final
remarks are added in section 6.

2. ‘Dynamical’ representation of the Poincag algebra for any spin

Let us proceed from commutation relations of the ten-dimensional Lie algepsapf the
Poincaé groupPy 3 = T13 © SO13 (Th3 denotes the Abelian group of 4-translations and
S0, 3 is the restricted Lorentz group)

[M;un Mpa] = i(gquvp +ngMu,a - g,ll.pMUO’ - gvoMup)
[M;wa Pa] = i(gvaPp_ _g/va) (21)
[P/L’ PU] = 0

Here the four generatoi, correspond to the subgroup of translations, and the othel&ix,
to the restricted Lorentz group. The generators have the form:

P, =id,
Mp.v = L;w + S;/.v (22)

L, =x,P,—x,P,
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whereS,,, are the generators of the finite-dimensional representation of the Lorentz group.
The Casimir operators are

P?= P, P" W2 =w,w* (2.3)

whereW,, = 1e,.,, M"" P’ is the common Pauli-Lubanski pseudovector.

Our idea is to introduce an external field invariantly into the Poiaedgebra, i.e. one
has to transform the Poin@generators to be dependent on the external field in such a way
that the new, field-dependent generators would obey the commutation relations (2.1). Such a
Lie algebra of the Poincargroup is called ‘dynamical’. As was shown by Chakrabarti, the
simplest way to build the ‘dynamical’ representation is to introduce the external field by a
non-singular transformation

Uiprs— pla=UprsU P =p13+[U, pra]U " (2.4)
or explicitly

n, = P, +[U, PM]U_l XM:xM"'[U»xﬂ]U_l (2.5)

Oy = S,uv + [U, S;w]U—l }\;w = XuTly — XoTTy +Guv- .

Now the question is, how to find the transformation operator. Does it exist for any field
A, (x) or only for the special forms o, (x)? There is no direct prescription for how to find
the operatol/ in general. However, it can be shown [6, 7] that such an operator can be found
for a special field. Let the external field be an arbitrary functiof ef k - x

Aplx) = Au(§) (2.6)
with the Lorentz gauge
kA, =0 (2.7)

whereA), = (dA,/d§). (Physically speaking, we make a reasonable idealization, describing
a laser beam with a plane-wave field characterized by a null vegtpr

The Poincak algebra 3 and the external field , (§) together generate the ‘dynamical’
representatiop‘i3 with the operators

P, — m, =P, +k,h +k,bF,,5°
S;w - Oy = Sp,v + Zb(gquua - gvaua +bg/4,0(G)§g - bgvp(Gz)ua +bG/4vaa)Spa

. 2.
Xy = Xu =X Hi[h +5G,, 877, x,] (2.8)
L;w - )‘-;w = XuTlv — XvTTy
where
dh —e
h =— b= bG,, =k, f, —k,
de 2K, . 24 Ju (2.9)

F,=G (G*) = G,,,G".

jzay
The parameter is the charge of the particle described by the wavefunafiar).

The operatok, = k, P* commutes with any other and plays a special role in the theory.
Further it is assumed that its invers¢Kl,, exists in case it is needed for the construction of
the theory, i.e. the operatoy X, is assumed to be non-singular.

According to the line of thought presented by relation (2.4), realization of (2.8) can be
achieved by the non-singular transformation

U =expih+bG,,S7") (2.10)

and, therefore, the construction of the ‘dynamical’ representation in the case of the field on
which the restrictions (2.6) and (2.7) are valid is fulfilled. With the exception of the special
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form of the field the constructed ‘dynamical’ representation is the most general representation
for an arbitrary spin.

To use the representation reasonably it needs a specification. Having introduced the
external field into the Poincaralgebra, we have introduced a certain form of interaction into
the theory. It is reasonable to specify the representation in such a way that, in the spin-0 and
spin—% cases, the interaction introduced with the help of the ‘dynamical’ representation would
coincide with the minimal electromagnetic coupling. The desired result can be achieved by
choosing

—e e
=—A N =—(3eA* - AP).
f,u- 2Kp I Kp (Ze )
From equations (2.9)
Guv = kyA, — kA, Fuy =ky Al — kAl = 9,A, — 3,A,
and the generators of the ‘dynamical’ Poirt’lzal‘gebrep‘l{3 have the form:

7, =P, +kﬂ—22 (eA2—2A- P — F,,5")
p

e e
Ouy = S;w - _<_A2(gp.pkv - gvpkp.)ka +gup(kvAa —ksA))

K,\2K
r r . (2.11)
—8uplkyAs —ksA,) — K—(kMA,, — kVAM)k,,A¢,>S""
p
€ Lo}
Xy = Xy — m[x,u/olsg (eA? —2A-P)—G,,S ﬂ].
These generators can be found by applying to the free P& mygarerators the operator
U=Uy-Us) (2.12)
where
. d
Up = exp|:| / —S[ZeP CA(E) — e2A2(“§)]] (2.13)
2K,
and
Us) = exp[—ii(kMAv _ kVAM)S“”]. (2.14)
2K,

3. ‘Dynamical’ interactions

We have shown that in the case of a special external electromagnetic field there exists the
operator/ which transforms the free Poin@aalgebra 3 into the ‘dynamical’ representation

p‘l{g. By analogy with the free-particle case one can realize the ‘dynamical’ representation
p‘{’s on the solution space of the relativistically invariant equations. If in the ‘dynamical’
representation of equations we write the operators explicitly in terms of the free-field operators,
as in equation (2.11), we can find the forms of the Poiedéavariant ‘dynamical’ interactions,
which will be demonstrated below. Since any system of higher-order differential equations
can be reduced to a first-order system, let us start with a first-order relativistic system

(P*B, —m)® =0. (3.1)
The requirement of relativistic invariance imposes the following conditions of-tinatrices:
[:3;“ Spa] = i(gupﬁa - g,u.aﬂp)~ (3.2)
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The requirement of relativistic invariance also implies the Klein—Gordon condition, which
claims that equation (3.1) can be reduced to the Klein—~Gordon equation for every component
of the multi-component wavefunctioh by a finite number of differentiations and algebraic
operations. Such an operator which transforms the first-order relativistic wave equation
into the second-order Klein—Gordon equation is called the Klein—Gordon divisor [8] and the
requirement can be written as follows:

dxG(P"B, —m) = P?> — m?. (3.3)

Further, equation (3.1) describes a system of many spins. To convert the equation into that
of the single-particle theory one has to impose supplementary conditions gantiagrices.
These conditions depend on the value of the spin of the particle we want the equation to
describe.

Applying the operatot/ to equation (3.1), one finds

U:(P*By—m)® — (,T* —m)d! =0 (3.4)
where
n,=UP U™ ' =upru—? o = U .

Thel'-matrices satisfy the requirement of relativistic invariance with respect to the ‘dynamical’
representation

[F/u O-pd] = i(g,upr(r - guarp) (35)

and all the other requirements needed for the construction of a single-particle theory.
In order to obtain th&-matrices we make use of the transformatiom its explicit form,
equation (2.14). We find

_ P _ ¢ ¢ 2 P
Fu - Vupﬁ - :3;4 - K_ iA kukp + GMP :8
P P

where the
VMP = (exp_(e/Kl’)G )/,(p
obey the relation

Vp“ Vip = &po-

Now, using the explicit forms ofr, andTI",, we derive the ‘dynamical’ interaction in the
language of free relativistic wave equations as follows:

(" —m) @ = (D — ——— f F —m )o! = 0. (3.6)
2K,
Heref =k, p* andf = F,,S™".
Itis important to notice that for the ‘dynamical’ interaction we obtain the following formal
substitution:

e
Pl,_—> PM_eAI _2_](‘,7](“ F
which differs from the minimal substitution with respect to the added tetay K , )k, F, and
which does not coincide with the transformatiBpn — =,,. Finally, from equation (3.6) it can
be seen that the ‘dynamical’ interaction coincides with the minimal one if the second term in
the equation is equal to zero. This must naturally be the case for spin-0 anél ppiticle
equations: the operatdr has been chosen to be in agreement with the minimal coupling.
Demonstration of the above-mentioned facts is straightforward.
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The Kemmer-Duffin spin-0 free-particle theory is defined by equation (3.1), where the
B-matrices satisfy the relations

BubvPo + BoBvPu = 8uvPo * 8vo By
with the supplementary condition
BuBvBs =0 if u#v#o#u
and the Lorentz operators are defined as
Suv = 1[Bys Bul.
It can easily be shown that from the above properties offtineatrices it follows that
k, Fps B"SP = 0.

In the Dirac spin% particle cas¢s, = y, andS,, = i%[yﬂ, y,]. Here it can also be easily
verified that

ky Fps 'SP = 0.

However, for spins higher thaé‘nthe second term in equation (3.6) generally differs from zero,
which means that the interaction induced by the ‘dynamical’ representation is non-minimal.

The question is whether the new, non-minimal interaction will enable avoidance of some
of the defects of the higher-spin interaction theory.

4. Rarita—Schwinger equation in a ‘dynamical’ interaction

The free spin% particle Rarita—Schwinger equation [9] is given as

(P[LVM - m)’uﬁo =0 (4]3.)
Vuw# =0 (4]b)
P;ﬂ/fﬂ =0. (4.1c)

Usually the first equation in the system is called the true equation of motion and the two
others are subsidiary conditions.

Notallthe equationsin (4.1) are independent. Indeed, by multiplying the equation from the
left by y“ and by using the first subsidiary condition one obtains the last condition. Multiplying
the first equation (4.1) by +m one obtains the Klein—Gordon equation

(P? —m®)y, = 0.

Let us now transform equation (4.1) into the ‘dynamical’ representation. In order to do
this one must cast the equation into the matrix form [10],

[P.(1@y") —m]y =0 (4.2)
(Epw®y"y =0 (4.2)
PYE,, ®1y =0 (4.x)

where

(Euv)g = gﬁgwr
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Now we can apply the transformation (2.12), in which for sg)in
Sp_v = —ieuv ® 1+ l® Suv

where(e,,)? = —818vo * 8uo &l ands,, = i%[yﬂ, 1], SO that the matrixU takes the form:

U=Uy(Up ®Up) (4.32)
with
Up = exp[—m(kMAv — kUAM)e’“’:| (4.30)
as the spin-1 (Proca) part and
e
Up = ———(ky Ay, — kA y"yY 4.3c
D eXp|: 4Kp( " /4))/ Y ] ( )

as the bispinor (Dirac) part [11].
Applying the operatoiU defined by equations (4.3) to equation (4.2) one obtains the
Rarita—Schwinger equation in the ‘dynamical’ representation as follows:

|:(@ - m)g;w - Il(_e ka,vi|“I"dv =0 (448.)
P

YWt =0 (4.%0)

where¥? = Uy and ¥ = k, y*.

The first equation is the true equation of motion because it contains all the derivatives
D, W<, The static constraint (4b) is needed in order to eliminate all the superfluous s}oin-
components.

In the same way, using the operatbor applying the operatdi? +m) to the system (4.4)
one obtains

(P2 - mz)w =0— [(¢2 - mz)gup - ZigFW]\de =0 (4.5)
ie

P¢P=0-><D—— k)\l/”":O 4.6

P P 4K,, F o ( )

whereF = F,,y*y°.

As in the free-particle case only the equations in (4.4) are independent. Contracting the
first equation (44a) with y,, one obtains equation (4.6) and hence the dynamical interaction
is algebraically consistent.

5. ‘Dynamical’ interaction and causality properties

The main imperfection of the higher-spin theories with minimal coupling is the existence of
solutions which propagate acausally. The problems associated with acausality of higher-spin
equations, and in particular those for s@irﬂelds, have been the subject of many studies
[1,3,12-16].

The causality properties of the relativistic first-order wave equations can be investigated,
onthe one hand, from the equations themselves by using the Courant method [17] of wavefronts
and, on the other hand, by the Klein—Gordon equation deduced from the first-order equation
by applying the Klein—Gordon divisor, if such an operator exists.

The former possibility of examining the causality properties of the equations is quite
complicated because, due to the singularity of ghmatrices, the Courant method cannot be
applied directly. Nevertheless, we use the Courant method after decomposing the solution
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w4 into two terms, one of which is a transverse vector—bispinor fieldand the other is
determined by a bispinor fielR, i.e. [12, 13]

Wi =, +3y, PB (5.1)
where

D,®" = 0. (5.2)

Substituting this expansion into equations (4.5) one obtains

1 0 m 0 ie o
Do, - EDMqu) _m®ll+zylbyp¢ - K_ KF,,®
p
ie ie
+—k o — —— k,®” =0 5.3
8](1, w Fvp 4KPV;L Fk, ( )
DB+ y,” =0. (5.3)

To account for the expansion (5.1) we note g, B};’;:0 denote the new dynamical variables
for which equations (5.3) provide the true equations of motion. Furthermore, the expansion
(5.1) presupposes the invariance under the gauge transformation

P, — O, +y, DA (5.4)
B — B —4A

whereA is an arbitrary bispinor solution of the wave equation
P*A =0. (5.5)

Thus the number of independent dynamical variables has been reduced to 16.

To investigate the nature of the propagation one must calculate the characteristic
determinantD(n) and examine its characteristic roets. The equation is hyperbolic if for
any unit space vecton, n? = 1, all the values of the solutions of D(n) = 0 are real,
and the theory is causal if all satisfiyto|| < 1 [17]. To find the characteristic determinant of
equation (5.3), we replac®,, by n, in the derivatives and calculate the determinagt) of
the resulting coefficient matrix:

A = (3)" (%),
Therefore, the system (5.3) is obviously hyperbolic, every characteristic surface is the lightcone
and the propagation is causal.

To study the causality properties of the first-order wave equations by means of the
corresponding Klein—Gordon equation, one must suppose the existence of the Klein—-Gordon
divisor dg . In general, the time coefficient matrg is singular and thereby equation (3.1)
is not a true equation of motion: the time derivatives of certain field components are not
determined. Inthe free-field case atrue equation of motion may be obtained byl ygit/),
which is a polynomial inP, and g, and is easily calculated with the help of the minimal
polynomial ofg,,.

For the interaction case the substitutiBp — D, does not provide a divisafx (D)
which would yield a second-order equation. It has been shown by Cox [18] that for a causal
theory based on the wave equation (3.1) interacting minimally with an external field, severe
supplementary conditions are needed.

One can demonstrate that, in the case whergthmatrices are such that for equation (3.1)
there exists a Klein—Gordon divisor, there also exists the divisor for equation (3.4) (or (3.7))
generated by the transformation

U:dKG — Okg = UdKGUil. (56)
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Application of the ‘dynamical’ divisor to equation (3.4) gives

Ok, TH —m)®! = (7% — m?)d! = (D? — ¢F,, 8" —m?)d? = 0. (5.7)

The second-order equation is the arbitrary-spin generalization of the Feynmann-Gell-
Mann equation, or the Klein—Gordon equation with ‘dynamical’ (interaction) coupling. Since
the coefficient matrices before the highest (second-order) derivatives are equal to a unit
matrix one may conclude that all the equations (3.1) which have the Klein—Gordon divisor
describe, in the presence of ‘dynamical’ interaction, a causal propagation.

Finally, we consider an example of a srgnparticle. It has been shown [3, 13] that
equation (3.1), in the presence of interaction for séinhas solutions which propagate
acausally. However, the results of the analysis presented above demonstrate that in the case
of ‘dynamical’ coupling with a plane-wave field,, the first-order sping— equation describes
causal propagation. Indeed, according to the concept of weak discrete symmetries the most
general equation equivalent to that of Rarita—Schwinger (4.1) is [19]

{ngggw) + Y1y, P, +Yo2P,y, + YSPUVUV/LV;O - mgup}lﬂ” =0. (5.8)
Here the coefficient¥, = y, + y,¥s, y., ¥, € R obey the nilpotency conditions
YoYo=1

1+Y1+Yo+Y3+3Y1(Y2+2Y3) =0
21+ Y, —2Ys — Y1 +2(Y1 + Yo — 2Y3)V1 =0
2+3Y,+3(1+ 2Y1)(Y2 + 2?3) =0.
(Here by definitiont; = y; — ¥;ys.)
The Klein—Gordon divisor of equation (5.8) has the following form:

1 1
dxG(P) =m+(PB) + Z[(Pﬂ)z — P?+ FPﬂ)[(Pﬂ)2 — P?
where(PB) = P,p" and

(,Ba);w = YOg;wVG + Ylgiyu + YZg(LVv + YSVGV;LVV- (59)
In the presence of ‘dynamical’ interaction one finds

ie
{(YO D - m)g;w - Y3V;1 Dy, — K_YO ka.v + YlV;LLv + (Yo + ZYS)LMVv}“IJdM =0
p

(5.10)
whereL, = D, — (ie/4K )k, F and F = F,,y”y°. However, in spite of the equivalence
of the free equations (4.1) and (5.8), it is extremely difficult to prove the equivalence of
equations (4.4) and (5.10) if thE, satisfy the nilpotency conditions. Nevertheless, the
‘dynamical’ divisor® g transforms equation (5.10) into equation (4.5) and therefore a pure
spin—g equation in the presence of ‘dynamical’ interaction, equation (5.10) describes a causal
propagation of waves.

6. Final remarks

The basic advantage of the ‘dynamical’ representation is the consistent and causal theory of
the single sping particle. Naturally, some problems arise. For instance, establishing the
equivalence between the Rarita—Schwinger equation and the Bhabha-type equation in the
presence of a ‘dynamical’ interaction. The technical complications result in the calculation
of constraints and therefore, the Velo—Zwanziger method for estimation of causality proves
inapplicable. To test whether or not the first-order equation (3.6) suffers from acausality of
propagation, one could make use of the shock-wave formalism of Madora and Tait [20], which,
however, is the subject of a separate study.
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